Aura Validation of Numerous Molecules using FIRS-2 Balloon Observations

Ken Jucks

Harvard-Smithsonian Center for Astrophysics

In collaboration with Geoff Toon, Bob Stachnik, Herb Pickett, Jim Margitan, Ross Salawitch, Tim Canty and Laurie Kovalenko at JPL

FIRS-2 Capabilities

- •High Resolution FTS, operates over most of Planck curve of the atmosphere, observing in limb geometry from balloons.
- •The long wavelength end contains the MLS OH channel (80 cm⁻¹).
- •In the far infrared region, many of the same molecules measured by MLS have measurable rotational transitions, including O₃, H₂O, HDO, H₂¹⁸O, H₂¹⁷O, HCl, HF, HOCl, OH, HO₂, H₂O₂, HBr, HOBr, and NO₂.
- •At higher wavelengths, low frequency vibrational bands of heavier molecules are observable, including CO_2 , N_2O , O_3 , HNO_3 , CFC11, CFC12, $CINO_3$, NO_2 , N_2O_5 , acetone, etc.. Many of the bands to those used by HIRDLS, TES and MIPAS and ACE.
- •FIRS-2 makes measurements at all solar zenith angles and can cover an entire diurnal cycle during a balloon flight, providing a robust test of photochemistry.

Available Data, for Aura and other satellite missions

Specifics of Aura Validation Flights

- Flight origins from Fort Sumner, NM.
- Launch dates 23/09/2004 and 20/09/2005.
- Both flights lasted at least 18 hours at float.
- FIRS-2 made observations throughout both flights.
- 2004 flight has 9 FIRS-2 sets of profiles reported in AVDC archive file and day/night averages for selected files.
- 2005 flight has 18 sets of profiles reported in AVDC file and day/night averages for selected molecules.
- Both flights had the suite of JPL balloon instruments (stick around for both the SLS and MkIV talks...)
- Most MLS data shown will be 1 day zonal mean v2.1.
- Preliminary comparisons with HIRDLS have been shown during breakout groups or posters for HNO3, O3, and CFC11,CFC12

Sample FIRS-2 spectrum

Ozone Comparisons with MLS

N₂O retrievals

N₂O vs. O₃ Correlations

Water vapor Comparison with MLS and Frost Point sonde

- •FIRS-2 profile is the closest in time and location to MLS overpass.
- •Frost point sonde was launched from local airport here in Boulder the afternoon of the large balloon flight. The FIRS-2 profile closest to the time/place of the sonde compare similarly to this.
- •The MkIV profile from sunset statistically agree with the FIRS-2 data. (Not shown here.)
- •FIRS-2 retrieves H2O profiles using rotational transitions in the THz region, and well into the far infrared.

HNO₃ retrievals

- •Many profiles from many instruments.
- •FIRS-2 and SLS retrieve in the same air mass, MkIV is viewing at 90° CCW from that.
- •The azimuth observational direction of the observations changes during the flight to coordinate with both the Aura footprint and to ensure MkIV points at the sun for occultations.

- •All instruments measure with different bands or lines.
- •MLS and SLS use rotational lines that happen to fall within the channels (MLS) or the tuned channel (SLS).
- •MkIV uses data from the v_5 band or the v_2 band.
- •FIRS-2 normally uses the υ_9 band, but can also use the υ_5 band.

HCl retrievals

HO_x diurnal comparisons

- •Comparisons with v2.1 MLS. OH is averaged over a 5 degree latitude band for one day. HO₂ is a broad average because only one day currently exists.
- •MLS OH is slightly lower at the peak relative to the balloon data compared to the 2005 data.
- •Model curves are constrained by FIRS-2 observations of H₂O, O₃, and N₂O.

HOCl diurnal comparisons

- •MLS data is v1.5 data averaged over 15 days and a 5 degree latitude bin. We don't have enough v2.1 data yet to include here
- •FIRS-2 retrieves using 34 rotational line windows through the far infrared.
- •MkIV retrieves using the v_2 band in the infrared.
- •SLS uses one rotational line in the submillimeter, similar to MLS.
- •All flights of FIRS-2 and MkIV show similar comparisons to these model curves.
- •The model curves differ mostly because of changes in the rate of HO₂+ClO. See Laurie Kovalenko's poster for details of modeling and photochemical implications.
- •This reaction has major implications for ozone loss in the lower stratosphere.